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Approach for Evaluating Effects of Wall
Losses on Quarter-Wave Short-Circuit

Impedance Standards

H. B. SEQUEIRA, MEMBER, IEEE, AND B. C. YATES

Mmtract — The conservation of energy principle and first-order perturba-

tion theory have heen applied to obtain formulas for the physical lengths

and reflection coefficient magnitudes of quarter-wave coaxial and rectangu-

lar waveguide short-circuit impedance standards. The expressions for the

physical lengths ensure zero phase angle at the mating interface when wall

losses are present.

The method can be exteuded to include small dielectric and magnetic

losses, and requires only knowledge of the loss-free solutions. It can also be

applied to other waveguidlng structures which support uncoupled modes.

I. INTRODUCTION

T

HE QUARTER-WAVE short circuit was proposed [1]

and developed [2] as an impedance standard for several

coaxial and waveguide sizes about two decades ago. Several

events have since suggested a re-evaluation of that earlier

work. Programs such as MILSTAR have created a need for

scalar and vector measurement capabilities at millimeter-

wave frequencies. Indeed, an extension of the basic con-

cepts and techniques to the WR-15 waveguide system has

already been carried out [3]. The advent of high-perfor-

mance vector network measurement systems such as the

HP851O have generated a need for improved calibration

standards. There has also been recent interest in extending

conventional coaxial transmission techniques to 60 GHz

[4]. Taken together, these events suggest that improvements

in microwave and millimeter-wave network measurements

and techniques will be required both in coaxial and rectan-

gular waveguide systems over an unprecedented range of

frequencies.

Using quarter-wave short circuits as standards has several

advantages. First, their characteristics can be well analyzed.

Second, a relatively inaccurate knowledge of the conductiv-

ity of the coaxial or waveguide walls nevertheless yields an

accurate reflection coefficient for the standard so long as

the conductivity is high, as is the case in the most com-

monly used metals. For example, a 20-percent error in the

conductivity of the copper walls will result in only a

0.015-percent error in the reflection coefficient of the

standard [3]. Last, the standing-wave current minimum is

located at the interface, thereby minimizing the effect of
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mating imperfections on performance. For these reasons,

the quarter-wave short circuit may well be the best single-

frequency network standard available. It should be noted

that all the current millimeter-wave systems are also

single-frequency systems.

In the following discussion, we have extended the previ-

ous work [1]–[3] to include the effects of wall losses on the

phase angle of the reflection coefficient at the flange inter-

face. The result is presented as a corrected line length for

achieving a zero phase at the interface. We have also

obtained a relation between the reflection coefficient mag-

nitude and the corrected line length.

Our approach invokes the Poynting theorem, which fur-

nishes an elegant method for deriving the properties of

these standards.

II. THEORY

The Poynting theorem is the starting point for evaluating

the reflection coefficient of quarter-wave short-circuit im-

pedance standards in the presence of wall losses. For

harmonic fields with time variations of the form eJ’”, this

theorem may be expressed as

Here, S is a closed surface that bounds volume V, and

d~ is the outward normal to the surface. If the volume ~ is

filled with a medium whose permittivity ~ = ~‘ – jc”, per-

meability p = p’ — j“p”, and conductivity u~ are simple and

nondispersive, and V is bounded by walls characterized by

a surface impedance Z~, defined by [5, p. 37.]

l+j
E=zm~, zm=—

d,
(2)

where the skin depth is given by

r

2
8,= —

up u

and where o and p denote the conductivity and permeabil-

ity, respectively, of the walls, then (1) gives rise to the
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following relation:

for the real part, and

for the imaginary part. Here, ~ is a surface current on the

walls and is related to the tangential magnetic field at the

surface by

~=fixG

where A is a unit outward normal to the surface, and Wn

and We are the magnetic and electric energy, respectively,

stored in V.

Equations (3) and (4) differ from their counterparts in

more conventional analyses [5, p. 32], in that the contribu-

tions to the loss in the system arising from the bulk

conductivity u~ of the material filling volume V, and those

due to the finite conductivity of the walls, have been

separated and displayed explicitly. Due to the complex

nature of 2~, such a separation results in an additional

energy storage term given by the second integral on the

right side of (4). This term represents the energy stored in

the fields associated with the current distribution ~ flow-

ing in the walls. In our analysis, o~ will be assumed

negligible since the medium filling the volume of interest

usually is air.

Equation (3) forms the basis for computing the perturba-

tions to the magnitude of the reflection coefficient caused

by wall losses. It can also be used to evaluate the effects of

dielectric and magnetic losses, although that is not done

here.

Similarly, (4) can be applied to obtain the phase angle

perturbations in the reflection coefficient due to wall losses.

The stored electric and magnetic energy can conveniently

be expressed in terms of the incident power PinC for both

the coaxial and rectangular waveguides. The first term on

the right side of (4) is proportional to the excess of the

magnetic over the electric energy stored in the volume. For

the coaxial line, as well as for the rectangular waveguide,

both of length 1, this excess stored magnetic energy is

2u(W~ – W,) = 2PinC sin8 (5)

where @= 2~1 is twice the electrical length of the short

circuit. This expression in conjunction with (4) readily

shows that for the lossless case ( Z~ = O), the requirement

that the net stored energy equals zero at resonance implies

that 8 = n, or that the length 1 equals exactly a quarter

wave or integral multiple thereof. When the walls have

finite conductivity Z~ + O, and the resonance condition

obtained from (4) is now

P[
sin 6 + —=0.

2P1nc
(6)

Here, P, arises from the energy storage associated with the

wall currents and, since Z~ has equal real and imaginary

parts as displayed in (2), numerically equals the power loss

in the walls. Equation (6) shows that wall losses cause the

length of the short circuit to deviate from a quarter wave.

Since P1 and Pi.C are positive, O lies in the third quadrant,

i.e., the corrected length is somewhat larger than a quarter

wavelength due to the magnetic energy stored in the walls.

Note also that (6) has been obtained without regard to any

waveguide or transmission-line cross sectim; therefore, it

has applicability tc) a large class of nonradiating waveguid-

ing systems. Furthermore, it can be modified to incorpo-

rate open transmission line and/or waveguiding media

provided that the loss terms associated with surface-wave

leakage and radiation can be computed and included into

the power loss. Lastly, (6) forms the basis for computing

phase error in the short-circuit standard.

For small losses, 8 will exceed T by a small amount Ad

so that sin d s – Ad. Then, (6) may be expressed in terms

of the correction to the electrical length as

A19=&.
mc

(7)

The surface integral on the left side of (3) yields the

difference betweelm the incident and reflected power at

the connector interface, while the right side represents the

losses in the volume and the walls. Thus, (3) is a statement

of conservation of energy within the one-port network.

Since air is the most commonly used dielectric medium, we

may neglect its losses at most frequencies of interest and

consider only the wall losses. The magnitude of the reflec-

tion coefficient is given by

P1/Pine =1 – Irlz. (8)

Again, assuming small losses, the magnitude of the reflec-

tion coefficient can be approximated well by the leading

term in the binomial expansicm to give

lrl=l-Ae (9)

where Af3 is given in (7).

The calculation method consists of using the loss-free

solutions to calculate the incident power and power lQSSfor

the length 1 c)f the coaxial line or waveguide and evaluating

the correction Ad from (7). The length of the quarter-wave
short-circuit standard can then be calculated from

l=; +A1= ;+: (lo)

where A is the appropriate guide wavelength and ~ is the

corresponding propagation constant fcm the loss-free situa-
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tion. Eliminating Ad between (9) and (10) leads to an

expression for the reflection coefficient magnitude in terms

of 1, namely,

()
Irl=l–n +–1 . (11)

We now illustrate the method for the case of the coaxial

TEM line and the rectangular waveguide.

III. APPLICATIONS

A. Coaxial TEM Line

Fig. 1 is a view of the coaxial short circuit sectioned by a

plane that contains the cylinder diameter and the direction

of propagation z. The radius of the inner cylinder is a; the

inside radius of the outer cylinder is b. The guiding struc-

ture terminates in a conducting plane normal to the direc-

tion of propagation of the wave and located at z = O. We

are assuming implicitly that the cylinders and the terminal

plane are made of the same material, and that the space

enclosed by the conductors is filled with a dielectric (usu-

ally air). The connector interface is shown at z = – 1. For

this geometry, we calculate the power loss in terms of the

incident power as

where ~ = ~fi is the magnitude of the propagation vec-

tor for the TEM wave. The first term in (12) arises from

the coaxial walls, and the second term is due to the finite

nonzero impedance of the short circuit. Substituting this

result into (7) gives

/1 l\ \

(13)

which can be substituted into (10) to give the corrected line

length

Then, (11) can be used to compute the reflection coefficient

magnitude. For example, if ~ = 4 GHz (A = 7.495 cm),

b = 0.35 cm, a = 0.152 cm, and u = 105 S/cm, then 8,=

2.516 pm and (14) gives 1= 1.8751 cm, which exceeds a

quarter wavelength by 0.0014 cm or approximately 4.21

min. of arc. Substituting the corrected length in (11) gives

Ir[ = 0.99755, which corresponds to a return loss of 0.0213

dB and agrees with previous computations [2].

B. Rectangular Waveguide

Similar conclusions can be drawn about the dominant

TE mode propagating toward a conducting plane parallel

Connecting face

— ——

Fig. 1. Schematic sectional view of a coaxial quarter-wave short circuit,
illustrating the relevant dimensions used in the text.

Fig. 2. E-plane section of a rectangular waveguide quarter-wave short
circuit. 1 is slightly larger than a quarter of a guide wavelength.

to the cross section of a rectangular waveguide of width a

and height b and located at z = O. Fig. 2 illustrates the

geometry for this case. The power loss is calculated in

terms of the incident power and the propagation constant

~ of the waveguide mode as follows:

(15)

which gives the correction to the electrical length

Hl+$(l+L)

AO = /38,

1–:L

where L is defined for convenience as

() (fc/f )2
L= l+X

a fr-(fc/f)2”
Here, again, we have accounted for the

(16)

(17)

finite nonzero

impedance of the shorting plate. Proceeding as

coaxial TEM line, we obtain the corrected length

{ 1l+*(l+L)

l=>+;

1–:L

for the

(18)

For a WR-90 copper waveguide, where a = 2.286 cm,

b = 1.016 cm, and fc= 6.557 GHz, we have at 9.4 GHz,

8,= 0.6816 pm and Ag = 4.4511 cm. These values give
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1= 1.1129 cm, which exceeds a quarter of a guide wave-

length by 1.383 pm. From (11), we now obtain 11’I= 0.9996,

which corresponds to a return loss of 0.0034 dB and again

agrees well’ with previous computations [2]. Note that the

guide wavelength must be substituted into (11) to give Irl.

IV. SUMMARY

We have demonstrated an application whereby the

Poynting theorem is used to evaluate the effects of wall

losses on coaxial and rectangular transmission-line

quarter-wave short-circuits. The results show that the

physical line length must be slightly longer than previously

reported [3] to ensure zero phase or no current flow at the

flange interface. Due to this, the magnitude of the reflec-

tion coefficient is immune to mating imperfections. Other

loss mechanisms, such as dielectric loss, can also be in-

cluded provided they are small enough to conform with the

usual requirements of perturbation methods. Additionally,

the principles are readily extended to other waveguiding

systems once the loss-free solutions in those systems are

known.
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