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Approach for Evaluating Effects of Wall
Losses on Quarter-Wave Short-Circuit
Impedance Standards

H. B. SEQUEIRA, MEMBER, IEEE, AND B. C. YATES

Abstract —The conservation of energy principle and first-order perturba-
tion theory have been applied to obtain formulas for the physical lengths
and reflection coefficient magnitudes of quarter-wave coaxial and rectangu-
lar waveguide short-circuit impedance standards. The expressions for the
physical lengths ensure zero phase angle at the mating interface when wall
losses are present.

The method can be extended to include small dielectric and magnetic
losses, and requires only knowledge of the loss-free solutions. It can also be
applied to other waveguiding structures which support uncoupled modes.

1. INTRODUCTION

HE QUARTER-WAVE short circuit was proposed [1]

and developed [2] as an impedance standard for several
coaxial and waveguide sizes about two decades ago. Several
events have since suggested a re-evaluation of that earlier
work. Programs such as MILSTAR have created a need for
scalar and vector measurement capabilities at millimeter-
wave frequencies. Indeed, an extension of the basic con-
cepts and techniques to the WR-15 waveguide system has
already been carried out [3]. The advent of high-perfor-
mance vector network measurement systems such as the
HP8510 have generated a need for improved calibration
standards. There has also been recent interest in extending
conventional coaxial transmission techniques to 60 GHz
[4]. Taken together, these events suggest that improvements
in microwave and millimeter-wave network measurements
and techniques will be required both in coaxial and rectan-
gular waveguide systems over an unprecedented range of
frequencies.

Using quarter-wave short circuits as standards has several
advantages. First, their characteristics can be well analyzed.
Second, a relatively inaccurate knowledge of the conductiv-
ity of the coaxial or waveguide walls nevertheless yields an
accurate reflection coefficient for the standard so long as
the conductivity is high, as is the case m the most com-
monly used metals. For example, a 20-percent error in the
conductivity of the copper walls will result in only a
0.015-percent error in the reflection coefficient of the
standard [3]. Last, the standing-wave current minimum is
located at the interface, thereby minimizing the effect of
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mating imperfections on performance. For these reasons,
the quarter-wave short circuit may well be the best single-
frequency network standard available. It should be noted
that all the current millimeter-wave systems are also
single-frequency systems.

In the following discussion, we have extended the previ-
ous work [1]-[3] to include the effects of wall losses on the
phase angle of the reflection coefficient at the flange inter-
face. The result is presented as a corrected line length for
achieving a zero phase at the interface. We have also
obtained a relation between the reflection coefficient mag-
nitude and the corrected line length.

Our approach invokes the Poynting theorem, which fur-
nishes an elegant method for deriving the properties of
these standards.

II. THEORY

The Poynting theorem is the starting point for evaluating
the reflection coefficient of quarter-wave short-circuit im-
pedance standards in the presence of wall losses. For
harmonic fields with time variations of the form e/“’, this
theorem may be expressed as
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Here, S is a closed surface that bounds volume V, and
dS is the outward normal to the surface. If the volume ¥ is
filled with a medium whose permittivity e = e’ — je”, per-
meability g = p’ — ju”, and conductivity o, are simple and
nondispersive, and V' is bounded by walls characterized by
a surface impedance Z,,, defined by [5, p. 37.]
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where the skin depth is given by
2
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and where o and p denote the conductivity and permeabil-
ity, respectively, of the walls, then (1) gives rise to the
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following relation:
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for the imaginary part. Here, f; is a surface current on the
walls and is related to the tangential magnetic field at the
surface by

J=axH
where 7 is a unit outward normal to the surface, and W,
and W, are the magnetic and electric energy, respectively,
stored in V.

Equations (3) and (4) differ from their counterparts in
more conventional analyses [5,p. 32], in that the contribu-
tions to the loss in the system arising from the bulk
conductivity o, of the material filling volume ¥, and those
due to the finite conductivity of the walls, have been
separated and displayed explicitly. Due to the complex
nature of Z,, such a separation results in an additional
energy storage term given by the second integral on the
right side of (4). This term represents the energy stored in
the fields associated with the current distribution J; flow-
ing in the walls. In our analysis, o, will be assumed
negligible since the medium filling the volume of interest
usually is air.

Equation (3) forms the basis for computing the perturba-
tions to the magnitude of the reflection coefficient caused
by wall losses. It can also be used to evaluate the effects of
dielectric and magnetic losses, although that is not done
here.

Similarly, (4) can be applied to obtain the phase angle
perturbations in the reflection coefficient due to wall losses.
The stored electric and magnetic energy can conveniently
be expressed in terms of the incident power P, . for both
the coaxial and rectangular waveguides. The first term on
the right side of (4) is proportional to the excess of the
magnetic over the electric energy stored in the volume. For
the coaxial line, as well as for the rectangular waveguide,
both of length /, this excess stored magnetic energy is

20(W, —W,)=2P,_sinf

(5)

where 8 =28 is twice the electrical length of the short
circuit. This expression in conjunction with (4) readily
shows that for the lossless case (Z,, = 0), the requirement
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that the net stored energy equals zero at resonance implies
that 8 =, or that the length / equals exactly a quarter
wave or integral multiple thereof. When the walls have
finite conductivity Z,, + 0, and the resonance condition
obtained from (4) is now

P !

inf + ={.
sin 2P

(6)

Here, P, arises from the energy storage associated with the
wall currents and, since Z,, has equal real and imaginary
parts as displayed in (2), numerically equals the power loss
in the walls. Equation (6) shows that wall losses cause the
length of the short circuit to deviate from a quarter wave.
Since P, and P, are positive, 8 lies in the third quadrant,
i.e., the corrected length is somewhat larger than a quarter
wavelength due to the magnetic energy stored in the walls.
Note also that (6) has been obtained without regard to any
waveguide or transmission-line cross section; therefore, it
has applicability to a large class of nonradiating waveguid-
ing systems. Furthermore, it can be modified to incorpo-
rate open transmission line and/or waveguiding media
provided that the loss terms associated with surface-wave
leakage and radiation can be computed and included into
the power loss. Lastly, (6) forms the basis for computing
phase error in the short-circuit standard.

For small losses, 8 will exceed 7 by a small amount Af
so that sin # = — A#. Then, (6) may be expressed in terms
of the correction to the electrical length as

Py

Af = T

(7)

The surface integral on the left side of (3) yields the
difference between the incident and reflected power at
the connector interface, while the right side represents the
losses in the volume and the walls. Thus, (3) is a statement
of conservation of energy within the one-port network.
Since air is the most commonly used dielectric medium, we
may neglect its losses at most frequencies of interest and
consider only the wall losses. The magnitude of the reflec-
tion coefficient is given by

P,/P, =1— T2

inc — (8)
Again, assuming small losses, the magnitude of the reflec-
tion coefficient can be approximated well by the leading

term in the binomial expansion to give
IT|=1- A8

where A# is given in (7).

The calculation method consists of using the loss-free
solutions to calculate the incident power and power loss for
the length / of the coaxial line or waveguide and evaluating
the correction Aé from (7). The length of the quarter-wave
short-circuit standard can then be calculated from

/ A Al e (10)
=—+Al=—+—
4 4 28
where A is the appropriate guide wavelength and § is the
corresponding propagation constant for the loss-free situa-
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tion. Eliminating A# between (9) and (10) leads to an
expression for the reflection coefficient magnitude in terms
of /, namely,

|I‘[=1—w(¥—l). (11)

We now illustrate the method for the case of the coaxial
TEM line and the rectangular waveguide.

III. APPLICATIONS

A. Coaxial TEM Line

Fig. 1 is a view of the coaxial short circuit sectioned by a
plane that contains the cylinder diameter and the direction
of propagation z. The radius of the inner cylinder is a; the
inside radius of the outer cylinder is b. The guiding struc-
ture terminates in a conducting plane normal to the direc-
tion of propagation of the wave and located at z =0. We
are assuming implicitly that the cylinders and the terminal
plane are made of the same material, and that the space
enclosed by the conductors is filled with a dielectric (usu-
ally air). The connector interface is shown at z = —/. For
this geometry, we calculate the power loss in terms of the

incident power as
5 1 1
Ju— + —_
S(a b)

P,=P,
L7\ 2 1n(b/a)

(8 +sinf)+2p8, (12)

1

where B = w\/c? is the magnitude of the propagation vec-
tor for the TEM wave. The first term in (12) arises from
the coaxial walls, and the second term is due to the finite
nonzero impedance of the short circuit. Substituting this
result into (7) gives

1 1

a b)

Ja) T (13)

|
A0= B3 G

which can be substituted into (10) to give the corrected line
length

(14)

Then, (11) can be used to compute the reflection coefficient
magnitude. For example, if f=4 GHz (A =7.495 cm),
b=035 cm, a=0.152 cm, and 6 =10 S/cm, then §, =
2.516 pm and (14) gives /=1.8751 cm, which exceeds a
quarter wavelength by 0.0014 cm or approximately 4.21
min. of arc. Substituting the corrected length in (11) gives
|T| = 0.99755, which corresponds to a return loss of 0.0213
dB and agrees with previous computations [2].

B.  Rectangular Waveguide

Similar conclusions can be drawn about the dominant
TE mode propagating toward a conducting plane parallel
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Fig. 1. Schematic sectional view of a coaxial quarter-wave short circuit,
illustrating the relevant dimensions used in the text.
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Fig. 2. E-plane section of a rectangular waveguide quarter-wave short

circuit. / is slightly larger than a quarter of a guide wavelength.

to the cross section of a rectangular waveguide of width a
and height » and located at z = 0. Fig. 2 illustrates the
geometry for this case. The power loss is calculated in
terms of the incident power and the propagation constant
B of the waveguide mode as follows:

8, ([ 7 \? 2
P=P,— {(Ba) ( +~—)(0-s1n0)+0+sm0+2,8b}

(15)

which gives the correction to the electrical length

A
1+-—201+1L)
_4_b_8___ (16)
1-->L
b

AG = B8,

where L is defined for convenience as

L=(1+g) (f/f)
ale,~(f/f)

Here, again, we have accounted for the finite nonzero
impedance of the shorting plate. Proceeding as for the
coaxial TEM line, we obtain the corrected length

(17)

}\g
+ 5(1 +L)
. (18)
1--=L
b
For a WR-90 copper waveguide, where a=2.286 cm,

b=1.016 cm, and f,=6.557 GHz, we have at 9.4 GHz,
8,=0.6816 pm and A,=4.4511 cm. These values give
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{=1.1129 cm, which exceeds a quarter of a guide wave-
length by 1.383 pm. From (11), we now obtain |T'| = 0.9996,
which corresponds to a return loss of 0.0034 dB and again
agrees well with previous computations [2]. Note that the
guide wavelength must be substituted into (11) to give |T'|.

IV. SUMMARY

We have demonstrated an application whereby the
Poynting theorem is used to evaluate the effects of wall
losses -on coaxial and rectangular transmission-line
quarter-wave short-circuits. The results show that the
physical line length must be slightly longer than previously
reported 3] to ensure zero phase or no current flow at the
flange interface. Due to this, the magnitude of the reflec-
tion coefficient is immune to mating imperfections. Other
loss mechanisms, such as dielectric loss, can also be in-
cluded provided they are small enough to conform with the
usual requirements of perturbation methods. Additionally,
the principles are readily extended to other waveguiding
systems once the loss-free solutions in those systems are
known,
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